The Solar System

Magda Stavinschi, Beatriz García, Andrea Sosa

International Astronomical Union
Astronomical Institute of the Romanian Academy, Romania ITeDA and National Technological University, Argentina University of the Republic, Uruguay

Here is where stars are born

The Orion Nebula

The planets in the past: the naked eyes visibles

Mercury ${ }^{\dagger}$ Visible at Venus, sunset or Mars surise Jupiter Saturne

Planetary alignement, May- 2002

The Solar System today

It is constituted by the Sun and all the bodies that revolve around it, under the action of gravity:

- 8 planets
- Hundred of natural satellites of planets
- Tenths of dwarf planets (between them Ceres, Pluto, Haumea, Makemake and Eris)
- An unknown number of minor bodies: asteroids, comets and transneptunians (debris of the processes of the planet formation).

Where is the Solar System?

It is in Orion arm, one of the Milky Way arms.

> The Milky Way has about 200,000 millions of stars and its diameters is about 100,000 1.y.

The Solar System is located at a distance of $\sim 25,000$ light years from the center of the Galaxy (\sim half the radius), and takes 250 millions years to complete a rotation around the center. The speed is $220 \mathrm{~km} / \mathrm{s}(800.000 \mathrm{~km} / \mathrm{h})$

Model of the Milky Way, from the infrared
observations by Spitzer (2005); our
Galaxy is a barred spiral.

Solar System formation

- According to the standard theory, about 4.6 billion years ago the solar system was formed from the gravitational contraction of an interstellar gas and dust cloud. The collapse of the cloud started from a strong perturbation (possibly a supernova burst), which caused the gravitational force to overcome the pressure of the gases.

- The conservation of the angular momentum caused the nebula to turn faster and faster, to flatten out, and to give rise to a protosol at its center, and to a protoplanetary disk of gas and dust around it.

Solar System formation

- In the protoplanetary disk condensed small solid nuclei (planetesimals), which then were accumulated by an accretion process to form the planets.
- The standard theory described above is accepted for having found, through high resolution radio images, protoplanetary systems around many young stars and due to the possibility of explaining the formation of planets within those systems.

Solar System Studies

The Sun concentrates more than 99.8% of the mass of the SS, while 98% of the angular momentum is found in the orbital movements of the planets.

Currently, the study of solar system bodies is done from Earth, but also through space telescopes, sending missions to space and even descending on its surface.

Our star: The Sun

- With an age of 4,600 million years, the Sun is approximately in the middle of its life cycle.
-Every second, in the Sun's core, 4 million tons of matter are converted into energy, generating a large number of neutrinos, positrons and radiation.
25% is He , the rest are heaviest elements.

Energy production: fusion in the core.

Life cycle of the Sun

Within 5,000 million years, the Sun will swell and become a red giant. Then it will expel the outer layers, creating a planetary nebula, and in the center there will be a small star called white dwarf, which will slowly cool down.

Life Cycle

The Planets

XXVI IAU-AG Resolution, Praha, 2006:

In the SS, a "planet" It is a celestial body that:

- It is in orbit around the Sun.
- It has enough mass for its self-gravity (which is a central force) to impose itself on the cohesive forces of a rigid body so that it assumes a form in hydrostatic (quasi-spherical) equilibrium.
- It has cleared other objects the neighborhood along its orbit.

A body that meets only the first two criteria, and that is not a satellite, is classified as a "dwarf planet".

A body that meets only the first criteria, and that is not a satellite, is called "small body (or minor body) of the SS.

The Solar System today

(bodies in size scale)

The limit of the Solar System

All planetary orbits lie within the Heliosphere, a region of space that contains magnetic fields and plasma ("wind") of solar origin.

The Heliopause is the limit of the Heliosphere, where the solar wind merges with the interstellar medium.

In 2012, the Voyager 1 space probe crossed the Heliopause at a heliocentric distance of more than 100 A.U.

Earth shown for size comparison

Sun-Earth environment

The Interplanetary Medium

The Sun emits electromagnetic radiation and solar wind (a continuous flow of charged particles, plasma).

This dissipates at a speed of 1.5 million km / h, creating the heliosphere, a fine atmosphere that bathes the entire SS up to approx. 100 A.U., marking the heliopause.

The Earth's magnetic field protects the atmosphere from the solar wind and gives rise to the polar auroras (boreal and austral)

The heliosphere ensures a partial protection to the SS of the cosmic rays, protection that is stronger in the planets with magnetic field.

The "space weather" is monitoring 24 hs

入 SpaceWeather.com -- News and info...

spaceweather.com

Subscribe to SpaceweatherNews

News and information about the Sun-Earth environment

AURORA ALERTS
SUBMIT YOUR PHOTOS!
3D SUN
CONTACT US
SUBSCRIBE
FLYBYS
SCIENCE@NAS

Current Conditions

Solar wind
speed: $347.4 \mathrm{~km} / \mathrm{sec}$
density: 1.1 protons $/ \mathrm{cm}^{3}$
explanation I more data
Updated: Today at 0546 UT
X-ray Solar Flares
6-hr max: B8 0032 UT Har29
24-hr: B8 0032 UT Mar29
explanation 1 more data
Updated: Today at: 0500 UT

Daily Sun: 28 Mar 11

What's up in space

Tuesday, Mar. 29, 2011

Metallic photos of the sun by renowned photographer Greg Piepol bring together the best of art and science. Buy one or a whole set. They make a stellar gift.

SOLAR RADIO STORM: Did you know sunspots can make noise? Consider the following: "Over the past few days, I have been recording a sustained solar radio storm at 180 MHz ," reports amateur radio astronomer Thomas Ashcraft of New Mexico. "It consists of Type I radio bursts and sounds like ocean surf. Here is an audio sample from March 27th at 1930 UT. The sun seems to be entering a new phase of dynamism."

Radio emissions like these are caused by plasma instabilities in the sun's atmosphere above sunspots. With the sun becoming 'radio-active,' it's no coincidence that sunspots are emerging in abundance. Leading the way is behemoth active region AR1176, shown here in a photo taken yesterday by Larry Alvarez of Flower Mound, Texas:

Averted Imagination ASTROPHOTIGRAPH

The Planets

The 8 planets of our SS can be divided into:

- 4 Earth planets, in the innermost region (Mercury, Venus, Earth and Mars). Rocky, with approximate densities between 4 and $5 \mathrm{~g} / \mathrm{cm} 3$.
- 4 Giant planets, in the outermost region, which in turn are divided into:
- Gaseous Giants: Jupiter and Saturn. Richer in H anc He, with a chemical composition similar to solar.
- Ice Giants: Uranus and Neptune. Ice predominates with respect to gases. Its chemical composition differs a lot from solar.
- The giant planets are lighter than terrestrial ones, with densities between $0.7 \mathrm{~g} / \mathrm{cm}^{3}$ (Saturn) and $2 \mathrm{~g} / \mathrm{cm}^{3}$.

The giant planets had formed on time scales of the order of 10 million years (terrestrial planets did in about 100 million years).

They were not formed "in situ", there was a migration caused by the exchange of angular momentum between the giant planets in formation and the planetesimals that were swept to other regions of the SS or ejected from the SS

Earth

Mercury

The one closest to the Su n, presents an impact surface

The most important crater is "Caloris Basin" ($1,500 \mathrm{~km}$ in diameter): the impact that originated it produced waves that broke the surface at the antipodes (photo).

The precession of perihelion of Mercury

The precession of Mercury's perihelion is faster than the predictions of Newton's classical celestial mechanics.

That advance of perihelion was predicted by Einstein's General Theory of Relativity.
It is due to the curvature of the space caused by the Sun. It was a definitive proof of that Theory.

Venus

Observed on
Earth with an small telescope

Observed by the Hubble Space Telescope

Venus and Uranus are the only planets with retrograde movement (they turn on themselves in the opposite direction to how they revolve around the Sun).

- Venusian year $=224$ Earth days
- Venusian day = 243 Earth days.

The mixture of CO_{2} and dense clouds of sulfur dioxide create the greatest greenhouse effect of the entire SS, with temperatures reaching $460^{\circ} \mathrm{C}$, higher than that of Mercury.

The atmospheric pressure is 100 times the Earth's pressure, there are clouds and perhaps rain of sulfuric acid.

Venus Transit

When Venus passes between the Earth and the Sun, its shadow crosses the solar disk.

Because the inclination of the orbit of Venus occurs twice in 8 years, and the next takes more than a century (105.5 or 121.5 years).

In June 2004 and June 2012 the last ones took place. There will not be another until December 11, 2117

Mars

It has a fine atmosphere, composed mainly of CO_{2}. The atmospheric pressure is one hundredth of the Earth's.

Source of inspiration for many science fiction authors ("extraterrestrial" = "Martian"), due to the famous "canali" observed by Giovanni Schiaparelli at the end of the 19th century: the term was translated into English as "canals" as if they were human constructions.

Its red color is due to the oxide of Fe (hematite), which is found in surface minerals

Gydomia $=$ Víing $L, 1976$

Cydonia

Mars Global Surveyor 1998

Cydonia -Mars Express - Sep., 2006

There are traces that indicate that there was water on Mars.

The water may now be frozen in the subsoil.

As on Earth, there are stations on Mars because the axis of rotation is inclined with respect to the orbital plane, and because the planets move around the Sun keeping constant the inclination of the axis.

July

SEASONS on MARS

It has two ice caps, ice and CO_{2} whose extension varies with the seasons.

Curiosity on Mars (2004-present): a successful history of science and technology: a microbiology laboratory

Insight: arrives on Mars on Nov 28, 2018

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transpor,)

OBJECTIVE: to place a geophysical robot, equipped with high-tech instruments to study the interior, subsoil, heat transmission and movements of the Martian soil and analyze the early geological evolution of the planet.

Jupiter

The most massive planet of the SS, has more than 60 moons. In 1610 Galileo observed for the first time 4 of them that he called "Mediceas". That same year Simon Marius baptized them as Io, Europa, Ganymede and Callisto.

Auroras, Photo by Hubble Telescope

Probably has a small solid core, between 10 and 15 times the Earth's mass.

Saturn

The less dense planet of the SS.

It has more than 60 moons and some of them are between the rings, dynamically organizing the system, they are called "shepherd satellites"

System of Rings, formed by dust and very small pieces of ice.

Aurora in
Saturn, fhoto
by the Hubble Space
Telescope

- Saturne has more than 60 satellites but 7 are large enough to take a spherical shape.
- Titan is the largest (larger than Mercury and Pluto) and the only one in the SS with a dense atmosphere.

Cassini-Huygens Mi-sion

Huygens probe descending on Titan
(artistic vision)

Last photo on Titan surface, Huygens probe

Surface

Uranus

Its axis of rotation is practically in its plane of translation

Uranus has at least 27 natural

Rings system of Uranus

 satellites.The first two were discovered by William Herschel in 1787:
Titania and Oberon.

Urano • Julio 28, 1997
E. Karkoschka (University of Arizona Lunar \& Planetary Lab) and NASA

Neptune

Its color to the presence of methane in the atmosphere, which absorbs red and infrared.

Neptune

It is believed that it has a solid core of silicates and iron, almost as large as Earth.

Above the core is a shell of ice, methane, H and a little He

It has several dark rings, with origin unknown.

Image of the discovery. (1930)

Pluto is too small to disturb Neptune's orbit long enough to betray its presence, however much Lowell has calculated to locate it. Clyde Tombaugh found Pluto (magnitude ~ 13.5) photographing in a systematic way the plane of the SS.

Pluto System • February 15, 2006 Hubble Space Telescope • ACS/HRC

* Charon

40000 km
(6xan Nix

Overflight of Pluto (July 14, 2015)
 The faint atmosphere of nitrogen is observed

Eris Discovery

Planeta enano Eris y satélite Dysnomia. Agosto 30, 2006.

$$
\frac{50,000 \mathrm{mi}}{\overline{70,000 \mathrm{~km} \mathrm{1}}{ }^{\prime \prime}}
$$

Minor bodies of the Solar System

- They are the remnants of the planetary accretion.
- They comprise diverse populations of asteroids, comets and transneptunian objects.
- The asteroids are essentially rocky and metallic, while the comets are more fragile and porous objects, formed basically by ice (predominantly water) and dust particles.
- The vast majority of asteroids lie in a region between the orbits of Mars and Jupiter, known as the "Asteroid Main Belt."
- Transneptunian objects will contain significant amounts of ice, and are located in a region beyond the orbit of Neptune, known as the "Transneptunian Belt" (or Kuiper Belt, in recognition of one of the first to predict its existence).

Asteroids Main Belt

There are hundreds of thousands or millions, and the total mass would not exceed one thousandth of the Earth.

The size of the asteroids ranges from several hundred km to meters and fractions of m .

Ceres

Discovered in 1801 by
Giuseppe Piazzi, it was considered a planet until 1850 when many other similar objects were found.

It is the largest body of the asteroid belt, and the only one of them cataloged in 2006 as a dwarf planet.

With a diameter of almost $1,000 \mathrm{~km}$, it is large enough for its gravity to give it a spherical shape.

All other asteroids are considered small, irregular bodies, although some of them like Pallas and Vesta could be classified as dwarf planets if they are shown to reach hydrostatic equilibrium

Reservoirs of minor bodies in the SS

The reservoirs are relatively stable regions, where objects can remain for times comparable to the SS age, until some perturbative force changes their orbit.
There are three large reservoirs in the SS:

- The Main Asteroid Belt Other populations would come from this region, such as the asteroids that approach Earth (known as NEAS by its acronym in English).
- The Transneptunian Belt. It is the region where short-period comets come from.
- The Oort Cloud. It has a spherical distribution and is formed by the frozen planetesimals swept out by giant planets during the formation of the SS. Thanks to perturbations due to the close passage of stars or giant molecular clouds, or to the galactic tides, the orbits of some of these objects can change deviating towards the interior of the SS, transforming into long-period comets.

Data at April 17, 2019.
Source: NASA/JPL https://ssd.jpl.nasa.gov)

- Total of known Asteroids: 798,130. Including:
- Main belt: 705,913
- Troyans of Jupiter: 7,236
- Asteroids with inner Mars orbits: 3,573
- NEAs: 19,996
- Partial dangereuses Asteroids (PHAs): 1,973
- Comets:
- Elliptical: 420 long periodo ($\mathrm{P}>200$ years) +860 short periodo ($\mathrm{P}<200$ years).
- Parabolics: 1,837
- Hyperbolic: 347 (extra-solar origen)
- Trans-neptunians (TNOs): 3,218

Transneptunian belt and Oort cloud

Trans neptunians

Largest known trans-Neptunian objects (TNOs)

Makemake

Eris
Weywot

Dysnomia

Haumea

Comets

\square Are small bodies of a few km, made mainly of volatile materials (water ice, carbon dioxide, methane, ammonia, etc.) and dust particles.
\square When they approach the Sun they can be visible.
\square It is thought that $\mathrm{H}_{2} \mathrm{O}$ on Earth could come from them.

- In general comets have quite eccentric orbits. Those of long period have random inclinations and may have retrograde or direct orbits: those of short period have generally small inclinations and their orbits are direct.
-When approaching the Sun, the superficial ice of the comet is sublimated creating a Comets orbit coma or "hair", and the "tails": a dust tain formed by dust particles dragged by the gas, and an ionic tail formed by the atoms and ionized molecules that interact with the solar wind. The powder tail is curved, while the bluish ionic tail points straight and opposite the Sun

Halley: the most famous of the comets

It was named in honor of Edmond Halley, who predicted his approach to the Sun, applying the Law of Universal Gravitation an the calculation of disturbances. Halley did nc see his prediction confirmed.
It returns every 76 years.

In 1986 was the first comet visited by a probe: the Giotto. It photographed the nucleus.

Rosetta Mission: close encounter with the comet 67P/Churyumov-Gerasimenko

Philae descends on the comet on Nov 12, 2014

Nucleus Activity

Other Planetary Systems

In 1995 the Swiss astronomers Michel Mayor and Didier Queloz announced the detection of an exoplanet orbiting 51 Pegasi.

2MASSN12073:4393254

\square This star and its planet were baptized as Helvetios and Dimidio in 2015, after a public vote promoted by the IAU.

2M1207b directly imaged (ESO)

1st photo of an extrasolar planet around a brown drwaf 2M1207. March 16, 2003

Exoplanet Discoveries Through the Years

Kepler's $\underset{\text { As of May } 10,2016}{\text { Planets }}$ by Size

Kepler (March 2009), is NASA's first mission to find potentially habitable planets, the size of Earth.

On May 10, 2016, he announced the largest exoplanet collection for which news is available.

Out of a total of about 5,000 candidates, more than 3,200 have been verified, and 2,325 of these were discovered by the Kepler telescope.

Since 2018, the

 NASA satellite "Transiting Exoplanet Survey" will use the same method as the Kepler telescope to monitor 200,000 nearby bright stars and search for planets, especially the size of Earth or greater (the super Earths).

How many stars have planets?

How many of those planets are habitable?
In how many developed some form of life?

Questions that astronomy seeks to answer

Many Thanks
for your attention!

