Planets and exoplanets

Rosa M. Ros, Hans Deeg, Ricardo Moreno

International Astronomical Union

Technical University of Catalonia, Spain
Canarian Astrophysical Institute, Spain
Colegio Retamar de Madrid, Spain

Goals

- Understand the meaning of the numerical values found in the data tables of the Solar System planets
\square Understand the main characteristics of extra-solar planetary systems

Solar system

We look for models that provide information, not only arts and crafts.

According to the content

We want models with scientific content and those that display some concrete points

Activity 1: Distances from the Sun

Mercury	57900000 km		6 cm	0.4 AU
Venus	108300000 km		11 cm	0.7 AU
Earth	149700000 km		15 cm	1.0 AU
Mars	228100000 km)	23 cm	1.5 AU
Jupiter	778700000 km		78 cm	5.2 AU
Saturn	1430100000 km		143 cm	9.6 AU
Uranus	2876500000 km	$\xrightarrow{\square}$	288 cm	19.2 AU
Neptune	4506600000 km	$\xrightarrow{\square}$	450 cm	30.1 AU

Activity 2: Model of Diameters

Sun	1392000 km	139.0 cm
Mercury	4878 km	0.5 cm
Venus	12180 km	1.2 cm
Earth	12756 km	1.3 cm
Mars	6760 km	0.7 cm
Jupiter	142800 km	14.3 cm
Saturn	120000 km	12.0 cm
Uranus	50000 km	5.0 cm
Neptune	45000 km	4.5 cm

Activity 2: Model of Diameters

T-shirt with the diameters
of the planets to scale

Activity 3: Diameters and distances from the Sun

Sun	1392000 km		25.0 cm	
Mercury	4878 km	57900000 km	0.1 cm	10 m
Venus	12180 km	108300000 km	0.2 cm	19 m
Earth	12756 km	149700000 km	0.2 cm	27 m
Mars	6760 km	228100000 km	0.1 cm	41 n
Jupiter	142800 km	778700000 km	2.5 cm	140
Saturn	120000 km	1430100000 km	2.0 cm	250
Uranus	50000 km	2876500000 km	1.0 cm	500 m
Neptune	45000 km	4506600000 km	1.0 cm	
Usually a school yard only reaches out to Mars				

Activity 3: Model of diameters and distances in the playground ...

ma

Activity 4: Model in the city (Barcelona)

Sun	Washing machine	Puerta Instituto
Mercury	Caviar egg	Puerta Hotel Diplomatic
Venus	Pea	Pasaje Méndez Vigo
Earth	Pea	Entre Méndez Vigo y Bruc
Mars	Pepper grain	Paseo de Gracia
Jupiter	Orange	Calle Balmes
Saturn	Tangerine	Pasaje Valeri Serra
Uranus	Chestnut	Calle Entenza
Neptune	Chestnut	Estación de San

Model in the city of Metz (France)

Activity 5: Model of times

- $\mathrm{c}=300000 \mathrm{~km} / \mathrm{s}$

The time it takes light to go from Earth to Moon is: $\mathrm{t}=$ distance $\mathrm{EM} / \mathrm{c}=384000 \mathrm{~km} / 300000=1.3 \mathrm{~s}$

How would a conversation between planets by "video" be?

Sunlight takes to get to ...

Mercury	57900000 km	$\xrightarrow{\square}$	3.3 minutes
Venus	108300000 km		6.0 minutes
Earth	149700000 km	1	8.3 minutes
Mars	228100000 km	11	12.7 minutes
Jupiter	778700000 km		43.2 minutes
Saturn	1430100000 km	1	1.32 hours
Uranus	2876500000 km		2.66 hours
Neptune	4506600000 km	$\xrightarrow{\square}$	4.16 hours
(nae			

Activity 6: The Sun as seen from the planets

- $\alpha=\tan \alpha=$ radius Sun / distance to Sun $=700000 / 150000000=0.0045 \mathrm{radian}=0.255^{\circ}$
- From the Earth, the Sun measures $2 \alpha=0.51^{\circ}$

Activity 6: The Sun as seen from planets

Activity 7: Model of densities

Sun	$1.41 \mathrm{~g} / \mathrm{cm}^{3}$		Sulfur (1.1-2.2)
Mercury	$5.41 \mathrm{~g} / \mathrm{cm}^{3}$		Pyrite (5.2)
Venus	$5.25 \mathrm{~g} / \mathrm{cm}^{3}$		Pyrite (5.2)
Earth	$5.52 \mathrm{~g} / \mathrm{cm}^{3}$		Pyrite (5.2)
Mars	$3.90 \mathrm{~g} / \mathrm{cm}^{3}$		Blende (4.0)
Jupiter	$1.33 \mathrm{~g} / \mathrm{cm}^{3}$	$\stackrel{\square}{\square}$	Sulfur (1.1-2.2)
Saturn	$0.71 \mathrm{~g} / \mathrm{cm}^{3}$		Pine wood (0.55)
Uranus	$1.30 \mathrm{~g} / \mathrm{cm}^{3}$	IIL	Sulfur (1.1-2.2)
Neptune	$1.70 \mathrm{~g} / \mathrm{cm}^{3}$	1	Clay (1.8-2.5)

Activity 8: Flattening Model

- Cut cardboard strips of $35 \times 1 \mathrm{~cm}$. Attach them to a cylindrical stick 50 cm long and 1 cm in diameter. Leave the lower end loose so that it can move along the stick.
Rotate the stick in between your hands with quick rotations in one direction and the other. The centrifugal force deforms the
 cardboard bands as planets are deformed.

Activity 8: Flattening

Planets	(equatorial radius-polar radius)/ equatorial radius
Mercury	0.0
Venus	0.0
Earth	0.0034
Mars	0.005
Jupiter	0.064
Saturn	0.108
Uranus	0.03
Neptune	0.03

Activity 9: Orbital Periods model

-Attach a nut to one end of a rope and hold the rope opposite to it. Turn the rope over your head. -As you release more rope, it takes longer to complete an orbital period -If you remove some of the rope, it takes less time

Activity 9: Earth orbital data

The average orbital velocity $\mathrm{v}=2 \pi \mathrm{R} / \mathrm{T}$
For the Earth
$\mathrm{v}=2 \pi \times 150 \times 10^{6} / 365$
$\mathrm{v}=2582100 \mathrm{~km} /$ day $=107590 \mathrm{~km} / \mathrm{h}=29.9 \mathrm{~km} / \mathrm{s}$
(The average orbital speed of Sun around the galactic centre is $220 \mathrm{~km} / \mathrm{s}$ or $800000 \mathrm{~km} / \mathrm{h}$.)

Activity 9: Orbital data

Planet	Orbital period $($ days $)$	Distance from the Sun (km)	Orbital average speed $(\mathrm{km} / \mathrm{s})$	Orbital average speed $(\mathrm{km} / \mathrm{h})$
Mercury	87.97	57.9×10^{6}	47.90	172440
Venus	224.70	108.3×10^{6}	35.02	126072
Earth	365.26	149.7×10^{6}	29.78	107208
Mars	686.97	228.1×10^{6}	24.08	86688
Jupiter	4331.57	778.7×10^{6}	13.07	47052
Saturn	10759.22	1430.1×10^{6}	9.69	34884
Uranus	30.799 .10	2876.5×10^{6}	6.81	24876
Neptune	60190.00	4506.6×10^{6}	5.43	19558

Activity 10: Model of surface gravitational accelerations

- Surface gravity, $\mathrm{F}=\mathrm{G} \mathbf{M} \mathrm{m} / \mathrm{d}^{2}$, with $\mathrm{m}=1, \mathrm{~d}=\mathbf{R}$. Thus $\mathrm{g}=\mathbf{G} \mathbf{M} / \mathbf{R}^{2}$, where $\mathbf{M}=4 / 3 \pi \mathrm{R}^{3} \rho$
- Replacing: $\mathrm{g}=4 / 3 \pi \mathrm{GR} \rho$

Activity 10: Surface gravitational accelerations

Planets	Equat. Radius	Density		Calc. acc.	Real acceleration.		
Mercury	2439 km	$5.4 \mathrm{~g} / \mathrm{cm}^{3}$	$\xrightarrow[\square]{\square}$	0.378	$3.70 \mathrm{~m} / \mathrm{s}^{2}$	0.37	
Venus	6052 km	$5.3 \mathrm{~g} / \mathrm{cm}^{3}$	$1 \square^{\square}$	0.894	$8.87 \mathrm{~m} / \mathrm{s}^{2}$	0.86	
Earth	6378 km	$5.5 \mathrm{~g} / \mathrm{cm}^{3}$	$\underline{\\|} \square$	1.000	$9.80 \mathrm{~m} / \mathrm{s}^{2}$	1.00	
Mars	3397 km	$3.9 \mathrm{~g} / \mathrm{cm}^{3}$	$1 \\|$	0.379	$3.71 \mathrm{~m} / \mathrm{s}^{2}$	0.38	
Jupiter	71492 km	$1.3 \mathrm{~g} / \mathrm{cm}^{3}$		2.540	$23.12 \mathrm{~m} / \mathrm{s}^{2}$	2.36	
Saturn	60268 km	$0.7 \mathrm{~g} / \mathrm{cm}^{3}$	1	1.070	$8.96 \mathrm{~m} / \mathrm{s}^{2}$	0.91	
Uranus	25559 km	$1.2 \mathrm{~g} / \mathrm{cm}^{3}$	$\\|$	0.800	$8.69 \mathrm{~m} / \mathrm{s}^{2}$	0.88	
Neptune	25269 km	$1.7 \mathrm{~g} / \mathrm{cm}^{3}$		1.200	$11.00 \mathrm{~m} / \mathrm{s}^{2}$	1.12	
Moon			$\\|$		$1.62 \mathrm{~m} / \mathrm{s}^{2}$	0.16	

Activity 11: Model of "impact craters"

- Cover the floor with newspapers to prevent a mess
- In a shallow box, set a layer of 1 or 2 cm of flour with a strainer to make the surface very smooth
- Sprinkle a layer of a few millimetres of cocoa powder over the flour with the strainer
- From about 2 m high, drop a tablespoon of cocoa powder to
 create marks like impact craters
- The used flour can be recycled for a new experiment

Activity 12: Escape velocity

- $\mathrm{E}_{\mathrm{kin}}=1 / 2 \mathrm{mv}^{2}$
- $\mathrm{E}_{\text {pot }}=-\mathrm{GM}_{\text {planet }} \mathrm{m} / \mathrm{R}_{\text {planet }}$
- $\mathrm{E}_{\text {mec }}=\mathrm{E}_{\text {kin }}+\mathrm{E}_{\mathrm{pot}}=0$
- $\mathbf{g}_{\text {planet }}=\mathbf{G M}_{\text {planet }} / \mathbf{R}_{\text {planet }}^{2}$

Then: $-\mathrm{GM}_{\text {planet }} \mathrm{m} / \mathrm{R}_{\text {Planet }}+1 / 2 \mathrm{mv}^{2}=0$

$$
1 / 2 \mathrm{mv}^{2}=\mathrm{g}_{\text {planet }} \mathrm{mR}_{\text {planet }}
$$

the scape velocity results:

$$
\mathrm{v}=(2 \mathrm{gR})^{1 / 2}
$$

Activity 12: Escape velocity

Planets	Equatorial Radius	$\mathbf{g}_{\text {Planet }} / \mathbf{g}_{\text {Earth }}$		Escape Velocity
Mercury	2439 km	0.378		$4.3 \mathrm{~km} / \mathrm{s}$
Venus	6052 km	0.894		$10.3 \mathrm{~km} / \mathrm{s}$
Earth	6378 km	1.000		$11.2 \mathrm{~km} / \mathrm{s}$
Mars	3397 km	0.379		$5.0 \mathrm{~km} / \mathrm{s}$
Jupiter	71492 km	2.540		$59.5 \mathrm{~km} / \mathrm{s}$
Saturn	60268 km	1.070		$35.6 \mathrm{~km} / \mathrm{s}$
Uranus	25559 km	0.800		$21.2 \mathrm{~km} / \mathrm{s}$
Neptune	25269 km	1.200	$\stackrel{\square}{\square}$	23.6 k

Activity 12: Rocket launch

- Cardboard
- Film container
- 1/4 Effervescent tablets

Extrasolar planetary systems

In 1995 Michael Mayor and Didier Queloz announced the detection of an exoplanet orbiting 51 Pegasi

We depend on the technology

Galilei observed Saturn with his

 telescope in 1610 for the first time. He did not see a fine ring but interpreted it as a star with three bodies.You had to wait for Huygens (1659) with a better telescope to solve the ring. For this reason the painting of Rubens (1636-1638) symbolizes Saturn with three objects according to the discovery of Galilei.

Names for exoplanets

A letter is placed after the name of the central star starting with "b" for the first planet found in the system

$$
\text { (e.g. } 51 \text { Pegasi b). }
$$

The next planet is named with the next letter of the alphabet c, d, e, f, etc.
(51 Pegasi c, 51 Pegasi d, 51 Pegasi c or 51 Pegasi f) Se

Exoplanet detection methods

Many methods are used:
\square Radial Velocity and Doppler Effect
\square Transit Method
\square Microlensing
\square Others

Detection Method: Radial Velocity

The variation of the radial velocity of the star when orbiting the barycenter of the planet and star system is measured using the Doppler Effect.
It was with this method that the first exoplanet 51 Pegasus b was detected.

Activity 13: Doppler Effect

The Doppler effect is the change of the wavelength of the light when the source is in motion.
When the source approaches the wavelength is shortened and the observed light shifting to the blue part of the visible spectrum.
When it moves away,
 observed light shifting to the red part of the visible
spectrum.

Activity 13: Doppler Effect

It has been reproduced by reproduced with a bucket of water, a cap with chain and the mobile flash.

Detection Method: Transits

During the transit of an exoplanet, the brightness of the star undergoes a small decrease.
For solar-type stars and Jupiter-sized planets, the brightness decrease is approximately 1%, in the case of Earth-sized planets the decrease is around 0.03%.

Activity 14: Transit simulation

Using two balls: one large for the star and one small for the exoplanet orbiting the star.
With the observer in the same plane of the orbit and observing from that place, you will see the exoplanet passing in front of the star and the brightness of the star decreasing.
But if the observer is not in the same plane of orbit, no change in the brightness curve will be observed.

Observer in the plane of the orbit

Observer out of the plane of orbit

Detection Method: Micro Lensing

There is an enlargement or distortion that highlights the starexoplanet system, due to the alignment of the system with a star or object that makes the gravitational lens.

There must be complete visual alignment between the three bodies (earth, object-lens and star-exoplanet).

Activity 15: Simulation of microlenses

With only one wine glass foot, nothing is seen.

With a pair of wine glass feet
Then we pass one over the other and a point emerges and then
even two.

Detection Method: Direct

Gemini/GPI

The image of the star is studied to determine the exoplanets around it.

Due to the amount of light emitted by the star, it is not easy to carry out.

2013 known exoplanets according to the different detection methods

Models of exoplanet systems

There are more than 2000 exoplanet systems confirmed and several thousand candidate exoplanets
Jet Propulsion Laboratory (NASA; http://planetquest.jpl.nasa.gov/)
The masses are compared with Jupiter ($1.9 \times 10^{27} \mathrm{~kg}$) or the Earth $\left(5.97 \times 10^{24} \mathrm{~kg}\right)$.

Technological limits are the cause.

Activity 16: Scale models of exoplanetary systems

Distance $1 \mathrm{AU}=1 \mathrm{~m}$
Diameter $10000 \mathrm{~km}=0.5 \mathrm{~cm}$

Activity 16: Build Solar System:

Solar System	Distance AU	Diameter km	Model Distance	Model Diameter
Mercury	0.39	4879	40 cm	0.2 cm
Venus	0.72	12104	70 cm	0.6 cm
Earth	1	12756	1 m	0.6 cm
Mars	1.52	6794	1.5 m	0.3 cm
Jupiter	5.2	142984	5 m	7 cm
Saturn	9.55	120536	10 m	6 cm
Uranus	19.22	51118	19 m	2.5 cm
Neptun	30.11	49528	30 m	2.5 cm

Host Star Sun G2V, Diameter of the Sun in the model is 35 cm
Distance $1 \mathrm{AU}=1 \mathrm{~m}$
Diameter $10000 \mathrm{~km}=0.5 \mathrm{~cm}$

Activity 16: Build 1st exoplanetary system:

Upsilon Andromedae Titawin	Discovery year	Distance AU	Diameter km	Model Distance	Model Diameter
Ups And b/Saffar	1996	0.059	108000	6 cm	5.5 cm
Ups And c/Samh	1999	0.830	200000	83 cm	10 cm
Ups And d/Majriti	1999	2.510	188000	2.5 m	9 cm
Ups And e/Titawin e	2010	5.240	140000	5.2 m	7 cm

Host Star Ups Andromedae F8V is at 44 1.y. in And., Diameter 1.28 of the Sun in the model is 45 cm

Distance $1 \mathrm{AU}=1 \mathrm{~m}$
Diameter $10000 \mathrm{~km}=0.5 \mathrm{~cm}$

Activity 16: Build "terrestrial" planets

Gliese 581	Discovery year	Distance AU	Diameter km	Model Distance	Model Diameter
G1.581 e	2009	0.030	15200	3 cm	0.8 cm
G1.581 b	2005	0.041	32000	4 cm	1.6 cm
G1.581 c	2007	0.073	22000	7 cm	1.1 cm

Host star Gliese $581 \mathrm{M} 2,5 \mathrm{~V}$ is 20,5 l.y. in Libra, Diameter 0.29 of the Sun in the model is 10 cm

Distance $1 \mathrm{AU}=1 \mathrm{~m}$
Diameter $10000 \mathrm{~km}=0.5 \mathrm{~cm}$

Activity 16: Build "habitable terrestrial"planets

Kepler 62	Discovery year	Distance AU	Diameter km	Model Distance	Model Diameter
Kepler-62 b	2013	0.056	33600	5.6 cm	1.7 cm
Kepler-62 c	2013	0.093	13600	9 cm	0.7 cm
Kepler-62 d	2013	0.120	48000	12 cm	2.4 cm
Kepler-62 e	2013	0.427	40000	43 cm	2 cm
Kepler-62 f	2013	0.718	36000	72 cm	1.8 cm

Host star Kepler 62 K 2 V is at 1200 1.y. in Lyr,. Diameter 0.64 of the Sun in the model is 22 cm

Distance $1 \mathrm{AU}=1 \mathrm{~m}$
Diameter $10000 \mathrm{~km}=0.5 \mathrm{~cm}$

Possible habitability of exoplanets

- In the habitable zone of Kepler-62: the two exoplanets could have liquid water on their surfaces. For Kepler-62e, which is near the interior of the habitable zone, this would require coverage of reflective clouds that reduces the radiation that heats the surface. Kepler-62f, on the other hand, is in the outer zone of the habitable zone

Activity 16: Build "habitable terrestrial"planets

Trappist-1	Discovery year	$\begin{aligned} & \text { Distance } \\ & \text { AU } \end{aligned}$	Diameter km	Model Distance	Model Diameter
Trappist-1 b	2016	0.012	28400	1.2 cm	1.4 cm
Trappist-1 c	2016	0.016	28000	1.6 cm	1.4 cm
Trappist-1 d	2016	0.022	20000	2.2 cm	1.0 cm
Trappist-1 e	2017	0.030	23200	3.0 cm	1.2 cm
Trappist-1 f	2017	0.039	26800	3.9 cm	1.3 cm
Trappist-1 g	2017	0.047	29200	4.7 cm	1.5 cm
Trappist-1 h	2017	0.062	19600	6.2 cm	1.0 cm

Host star Trappist 1 M 8 V is at 40 1.y. in Acuarius, Diameter 0.1 of the Sun in the model is 4 cm

Distance $1 \mathrm{AU}=1 \mathrm{~m}$
Diameter $10000 \mathrm{~km}=0.5 \mathrm{~cm}$

Possible habitability of exoplanets

In the Trappist-1 system are rocky and could have large amounts of water on their surface, either liquid, in the form of steam, or as an ice crust. In the habitable zone of Trappist 1 is Trappist-1e which appears to have a dense nucleus, comparable to Earth which seems to indicate that of all the planets in this system, this is the most Earth-like and is likely to have a protective magnetosphere.

Conclusions

- Knowledge is more "concrete" of planets
- Relationships establish "parameters" that allow a better understanding of dimensions
- The solar system "is empty"
- Introduction of exoplanets. Recognize the methods for detection.

Thank you for your attention!

